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Depending on borehole operation, a sand plug in the stem can exist 
in various states. The resistance to the fluid stream offered by a 
borehole whose plug is fluidized is a markedly different function of 
the discharge rate than the resistance of a borehole with a densely 
packed plug. Transition from the state in which the plug constitutes 
a dense layer of sand particles to a state with a fluidized plug occurs 
in a certain range of discharge rate values. The resistance to motion 
of the fluid in the borehole stem under a given set of conditions is 
a function which decreases with increasing discharge rate over a 
certain range of values of the latter.  This results in instability of 
steady borehole gushing states associated for discharge rate values 
in this range and gives rise to auto-oscillatory gushing. 

In the present paper we construct a model of the steady charac- 
teristic of a borehole with a sand plug and carry out an elementary 
analysis of the conditions of violation of steady-state stability and 
of the models of the resulting auto-oscillatory cycles. 

w Let us consider a borehole of radius r0 and depth H containing 
a sand plug. We assume that the volume concentration of sand in the 
densety packed plug is p = p, (the quantity p, is usually close to 0.6), 

and that the height of the densely packed plug is h0 (which usually 
ranges from several tens to several hundreds of meters). We also 
assume that the pressures at the mouth of the borehole and at its con- 
tour within the layer are constant and equal to p0 and Pk, respectively. 

The pressure p0(t) in the borehole depends on time; it is clear that 
Pk > P0(t) > p0. Let us consider the resistance offered by the borehole 

stem to the fluid stream under the two sets of operating conditions 
( i . e . ,  with a densely packed and a fluidized plug). We assume that 
the motion of the fluid is steady and that the liberation of dissolved 
gas at a certain depth in the stem is negligible.  

1. Let the plug be densely packed. In this case the total resistance 

to motion consists of the ordinary hydraulic resistance to a fluid 
stream in a pipe of radius r0 and length H -- h 0 and the filtration 
resistance of the fluid in the plug. Introducing the corresponding fluid 
discharge functions per unit  pipe length r and ~o(q) normalized to 

a unit area of the transverse cross section of the pipe, we obtain 

Po - -  po = ~ (q) (H - -  ho) + c# (q)h o + dzg (H - -  hop,). (1.1) 

Here d z is the density of the fluid, g is the free-fal l  acceleration, 
and the last term is the weight of the fluid column per unit cross- 
sectional area of the borehole. The functions ~o(q) and r can both 
be regarded as power functions of q. With laminar filtration in the 
plug and turbulent flow in the free portion of the borehole we have 
r ~ q, r ~ q2. 

2. If the s/rod plug is fluidized, the total resistance can be ex- 
pressed as a sum of the aforementioned hydraulic pressure and the 

resistance of the suspended layer consisting of ping particles. The 
latter can be assumed equal to the total weight of the suspended par- 
ticles constituting the plug. This means that instead of (1.1) we have 

po --  po = ~ (q) (H -- h (q)) + dzg (H -- hop,) + d2ghop , .  (1.2) 

Here d 2 is the density of the particle material .  For moderately 
large q we can assume [1] that h(q) -- h0 << h0, so that h(q) ~ h 0. 
It is convenient to choose a pressure scale which ensures identical 
fulfi l lment of the equation 

po ~ _ _  dzg (H __ hop,). 

Equations (1.1) and (1.2) then, respectively, yield the relations 

po = ~z (q) = ~ (q) ( H  - -  %) + cp (q)%, 

1% = F2 (q) = "r (q) ( H  - -  h,) + d2~hnp~,. (1.31 

It is clear that relations (1.3) can also be used to describe quasi- 

steady-state motions such that p0(t) and q(t) vary quite slowly. The 
volume concentration of sand in the fhiidized plug can be determined 

from the relation 

/ (q, p) = rag.  (1.4) 

Here m is the mass of a single particle and y is the viscous friction 
force exerted on each particle by the fluid stream. Many empirical  
expressions have been proposed for f(q, p) [1]. 
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w Let us consider qualitatively the process accompanying transi- 
tion of the plug from the densely packed to the fluidized state. To 

this end we turn to the familiar dependence of the pressure drop in 

the suspended layer on the liquid-phase discharge rate [I, 2]. As q 

increases from zero, the difference Ap in the dense particle layer 

increases monotonically (Fig. 1). The layer begins to enter the flu- 
idized state once q reaches and continues to increase beyond a certain 
crit ical  value of q.; at  the same time the difference Ap decreases to 

a value approximately equat to the weight of all  the particles in the 

layer. This state of transition from a dense to a suspended layer cor- 

responds to the segment BC of the curve in Fig. 1. The difference 

&p does not depend on q for q > q*, and begins to decrease again only 
for very large q. This is usually attributed to the removal of individual 
particles from the layer (region D of the curve in Fig. 1). With re- 
verse decrease in q, the representing point moves to the left along 
the curve CD. On reaching point C where q = q* it does not leave the 
segment BC of the fluidization characteristic, but moves along an 
extensidn of the line CD to its intersection with the curve OB at the 
point A, where q = q0. With further decreases in q the value of Ap 
drops to zero along the sarae curve OB. The total change in the 
pressure difference in passing from the state lvl(Apm = max{Ap}) 
to the state C for a suspended Rarticle layer in a homogeneous 

fluid usually constitutes several percent of the quantity Ap at the 
point C; the delay in fluidization described by the segment ABMC on 
the curve in Fig. 1 is usually attributed to the presence of cohesive 
forces both between individual particles and between the particles and 

the wails of the apparatus in which fluidization is produced [1,2]. If 
these forces were not present, transition to the fluidized state would 
occur abruptly at q --- q0. 

We note that there have been attempts to attribute the additional 
pressure difference in the fluidization characteristic to acceleration , 
of the particle materials with expansion of the dense layer. It appears 
that this factor can become significant only with very rapid ("ex- 
plosive") expansion of the layer. Nevertheless, the additional differ- 
ence has been noted in experiments with rather slow fluidization [1]. 

The presence of hysteresis in the fluidization characteristic is 
attributable to the fact that the characteristic t ime of this variation 
is small as compared with the relaxation time of the cohesive forces 

during the establishment of contacts between particles. Moreover, in 

exoeriments with oarticles coated with films of one fluid and flutdized 
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by a flow of another fluid (e. g . ,  in the fluidization of wetted particles 
by air) the hysteresis can alto be attributed to the fact that the inten- 
sification of transfer processes with transition to the suspended state is 
accompanied by partial thinning of the fluid filmsdueto their evapora- 
tion or solution. We note that transition from a particle layer in a 
homogeneous fluid to a layer of wetted particles is associated with an 
increase in the value of the additional pressure difference and with an 
extension of the transient portion ABMC of the curve. 

Fig. 2 

With films of finite thickness covering the particles, homogeneous 
broadening of the layer gives rise to a gradual decrease in the cross- 
sectional area of the liquid meniscuses in the particle contact zone. 
Furthermore, loosening of the dense layer for q ~> q, makes possible 
the formation of local airholes and channels through which the excess 
fluidized medium can move. These factors have the effect of rupture 
of the adhesive bonds occurring at some rather than at all of the con- 
tacts between particles on passage through the critical value q = q. of 
the discharge rate. The fraction of ruptured bonds increases and 
monotonically approaches unity with increasing q, actually attaining 
it at approximately q ~ q*. Thus, the intensity of the adhesive bonds 
does not drop abmptly to zero at q = q., but approaches zero grad- 
ually over some interval of discharge rate vaiues q. < q ~< q*. This 
explains the widening of the declining portion of the fluidization 
characteristic. In this intervat the remaining cohesive forces hinder 
further extension of the layer and its transition to the fluidized state. 
Equilibrium is established between the viscous friction forces appear- 
ing in (1.4) and the cohesive forces. The cohesive forces cease to 
play any significant role in the range q > q*, and the relationship 
between q and the equilibrium value of the volume concentration p 
of the layer is given by Eq. (1.4). 

In the transition range the total force exerted on all the suspended 
particles by the fluid stream turns out to be larger than the weight of 
all the particles constituting the layer. The chief role in this range is 
played by the downward forces of particle friction against the walls of 
the apparatus, which hinder the upward motion of the layer as a whole. 
Local ~eruptions * of the fluid along random channels have the effect 
of increasing the friction forces, since they tend to increase the nor- 
mal pressure against the walls of the apparatus. In general, ff the 
friction forces are not sufficient to retain the layer, it is possible for 
the whole layer or a part of it to be ejected upward and for a piston- 
like state to become established. In this case it is possible to have an 
abrupt drop in Ap for q ~ const by some amount 5p, after which the 
Ap again varies smoothly. From now on we shall ignore the possibility 
of such a jump in the pressure difference, since its presence does not 
qualitatively alter our subsequent conclusions. 

Fig. 3 

As we know, petroleum filtered through a sand plug contains a 
certain proportion of heavy fractions (e. g . ,  asphaltenes and other 
resins) characterized by considerable adhesive properties. These frac- 
tions are selectively adsorbed from the particle surfaces with the 

formation of sticky films differing in composition from the surrounding 
petrolettm. These films can be regarded as analogs of the tiquid films 
coating particles fluidized by another fluid. The cohesive forces 
between particles coated by sticky films increase sharply in com- 
parison with the forces acting between the uncoated particles, and for 
sufficiently small particles may even exceed the weight of the lattes. 
This can result in a further prolongation of the process of transition 
of the film from the deusely packed to the fluidized state. 

Sand particles from the plug are always present in the petroleum. 
Hence, apart from the possibility of mechanical deterioration of the 
sticky films on transition to the finidized state, we can assume that 
their thickness remains constant. Recalling also the fact that the 
time required for the establishment of adhesive contact between the 
liquid film is quite small, we conclude that the variation of Ap with 
q is described by one and the same curve regardless of the direction 
of variation of q, i . e . ,  the hysteresis noted above is virtually absent. 

The analog of the quantity Ap inour problem is the pressure in 
the tapping face; the analogs of the segments OB and CD in the 
characteristic of Fig. 1 are the functions Ft(q) and F2(q) in (1.3). To 
find the resistance function Fs(q) in the transient range we must 
possess detailed knowledge of the composition of the petroleum, of 
the adhesive properties of its various fractions and their affinity for 
the particle material, and also of the microscopic particle shapes 
and dense packing structure. In addition, we must carry out a tho- 
rough investigation of fluctuation processes in the transient state. 
:Became of this, it is hardly possible to derive Fs(q ) theoretically at 
the present time. We shall nevertheless quantitatively analyze the 
problem of determining Fs(q ) under several simplifying assumptions. 

f- 
Fig. 4 

w Let us consider the variation of the cohesive forces with 
homogeneous expansion of the dense layer. This expansion is accom- 
panied by the disruption of direct contacts between hard particle 
surfaces and are replaced by contacts between the liquid films sur- 
rounding the particles. For simplicity we assume that the particles 
are spheres of radius a and that the minimum distance between their 
surface for a given expansion of the layes, when we can stilt speak 
of adhesive contact, constitutes 2l  z << a. We note that these 
assumptions already represent a major exaggeration of the true ad- 
hesive-contact area, since a) the quantity p, for a layer of irregularly 
shaped particles is usually smaller than the p, for a layer of ideal 
spherical particles [1], and b) the particle contact is approximated 
more closely by contact between a sharp prominence and a solid 
plane than by contact between two spheres. 

The contact zone is characterized by a meniscus formed on 
merging of the liquid films whose thickness k << a. It is convenient 
to replace the real meniscus by a figure whose cross section appears 
as the shaded area in Fig. 2 representing the contact zone. The vol- 
ume of one-half of this figure under the assumption that Z << a is 
given by 

0 ~ al = (/I + 12) - -  a l l  2a ~" z~12t~ -t-  1/4z~lla-1 . 

On the other hand, this volume must equal the volume of the 
segment "cut out of" the liquid film by the meniscus, i . e . ,  

0 ~ L ( l l  2 +  2/2)~2zt~l 2. 

Comparing these expressions, we obtain the following expressions 
for l and for the area s of a single contact: 
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l ~. 2[a (2~. - -  lu)] V' , s "~  4r~a (2~ - -  l.~), 12 ~.< 2k. (3.1) 

Replacement of the real meniscus by the above model also exag-  
gerates the true min imum cross-sectional area s of the meniscus. The 
average area of a particle of grainy mater ia l  is clearly given by 

S ~ So  - -  z s  + 2 ~ l  ( l  1 +  13 - -  ~) z 

S o - -  4;~za (2~ - -  12) Y (2~ - -  l~), 

S o = 4g (a -~ k)2 ~ 4an ~ " (3.2) 

Here z is the coordination number of the latt ice approximating 
the given packing of the dense layer (the average number of contacts 
per particle);, Y(x) is the Heavlside function. 

The potential energy U per particle associated with the existence 
of adhesive forces in the medium is given by the expression 

U = - -  (So - -  ,9) rm  = - - 4 ~ z a  (2~ - -  l~)• Y (2~, - -  1~). (3.3) 

Here o is the surface tension at the boundary between the sticky 
fi lm and the ambient medium; ~ is the coefficient which corrects for 
the adopted approximations. A rough estimate shows that •  
approximately one order smaller than unity, Moreover, if ~ is also 
made to allow for the fact that the rupture of the adhesive bonds 
begins with the weakest contacts, and that the distribution of contacts 
over the average cross-sectional area of the meniscuses must in fact 
involve a large dispersion, i t  must be two, three, or even more orders 
smaller than unity. 

The generalized force per particle associated with the change 5l 2 
in the distance between particles is (by (3.3)) given by 

X '  ~ 4~za• (2~ - -  12). (3.4) 

Thus, in the approximation of homogeneous expansion of the 
particle layer the potential energy U of (3.3) depends linearly on l z 
(the broken line in Fig. 3), and the force X' of (3.4) is constant for 
l z < 2k; both quantities vanish for 12 > 2k. In fact ,  as the concentra-  
tion increases from the quantity p, ,  the system begins m experience 
fluctuations in p whose intensity rises rapidly with increasing devia- 
tion. These fluctuations disrupt the homogeneity of expansion, lead 
to channel formation, etc. As a result,  instead of one specific value 
of l 2 characterizing the layer at a given stage of expansion we have 
an entire spectrum of possible values of l~ describing the distance 
between various specific particles. In particular, even if l 2 >~ 2k,  
the system nevertheless involves adhesive contacts which make  the 
effective force X' different from zero. In other words, the energy U 
increases with increasing average l 2 more slowly than according to 
law (3.3) (see the solid curve in Fig. 3), while the force X' decreases 
monotonically from its max imum value as given by expression (3.4) 
(since for l z g 0 there are no fluctuations and since the expansion 
can be considered homogeneous) to zero as l z ~ ~. This can be 
allowed for by replacing the Heaviside function in (3.3) and (3.4) by 
the monotonically increasing function G(p) (G(p.) = 1). 

~o r q* 
Fig. 5 

Instead of 12 we can take p or the specific particle volume I~ as 
our generalized coordinate. Considering the functions p(Z2) and 0.(12), 
we can readiiy obtain expressions for the corresponding generalized 
forces, 

X = X '  (dp /d l~)  -1 ,  X" = X '  (dt%/dle) - t .  

Multiplying X" by the numerical  particle concentration n, we 
obtain an exlxession for the effective pressure of the system of 

packed particles considered in approximation of a continuous m e -  
dium. It is this pressure occasioned by cohesive forces which hinders 
the "rupture" of such a continuous medium,  i . e . ,  passage of the 
particles into the suspended state. In this connection the external 
force acting on the particles can be considered roughIy as a negative 
pressure. 

B c 
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Fig. 6 

Let the equilibrium state of a sand plug of concentration p = p(q) 
be achieved for some discharge rate q. This state is clearly de-  
termined by the equality of the virtual work 6A done by the external 
force to the change 5U in the potential energy of the system. The 
work 5A done by the force ~ - m g  over the particle displacements 
corresponding to the expansion of the plug (so that its concentration 
changes by 5p) turns out to be 

6..t ~ - -  2 
33 

N (] (q, p) - -  my) 6p. 

Here N is the total number of sand particles in the plug. Recalling 
that p ~ (a + lg) s, we find from (3.3) that 

6 U  ~ - -  4/37~p-la~z:sx~Na (p)6p. 

This yields an equation for determining p = p(q), 

/ (q, p) = m g  -{- 2 ~ p a - Z z •  (p) = • (p). (3.5) 

Equation (3.5) coincides with Eq. (1.4) in the range of advanced 
fluidization (G ~ 0). The presence of cohesive forces between the 
particles is important during transition to the suspended state if 

"~ = z x o  ~ 2 /334gp , - l d  2 . (3.6) 

It is clear that this condition is satisfied over a broad range of 
values of a, o, etc.  

The solution of (3.5) is determined by the points of intersection of 
the curves ] (q ,p )  with the curve • the solution of (1.4) is deter- 
mined by the points of intersection of the curves J with the axis of 
abscissas (see Fig. 4; the origin has been p laced  at the point • = m g ,  

qn > �9 �9 �9 > q2 > ql > %)- The discharge rate q0 introduced in Fig. 1 cor- 
responds to the point p = p, on the axis of abscissas in Fig. 4. The 
function X(P) for homogeneous expansion appears as the dashed line 
in Fig. 4. 

We obtain the following expression for the required resistance 
function F3(q ) of the borehole in the transient state: 

Po = F3 (q) ~--~ (q) (H - -  h0) -l- n,X (P) = 

= ~ (q) (H - -  h0) -}- d2gh0p. + 2~n,pa-l~ G (p), (3.7) 

Here n, is the numerical  particle concentration in the densely 
packed state. The appearance of a segment with a negative slope in 
the borehole characteristic F(q) is possible if the second and third 
terms in (3.7) are comparable in value and if condition (3.6) is ful-  
filled. The integral of the discharge rates over which F(q) is anoma~ 
lous is clearly determined by the quantity k and by the level of 
development of fluctuation processes in the system. 

The steady-state characteristic of the borehole is shown in Fig. 5; 
curves 1, 2, and 3 correspond to the functions F,(q), Fz(q ), and Fs(q) 
of (1.3) and (3.7). The slope of the curve to the right of point B is 
determined by the relationship of the various terms in (3.7) for p = 
= p(q.) = p.. The approximation of homogeneous expansion of the 
layer corresponds to the dashed curve BMC' with the jump M --> C' in 
Fix. 5. 
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w Let us assume that a filled layer is horizontal, that it is 
bounded by impermeable layers above and below, and that its thick- 
ness L coincides with the length of the tapping face of the borehole. 
The equation of transient filtration (in the elastic state) in the layer 
can be written as 

Op t 0 (r Op ) m~tc 1 dp 
a ~ = r ~ \  O~- ' a =  k ' c dl d (d l ) '  (4.1) 

Here ~ is the viscosity of the fluid, m is the porosity, k is the 
permeability of the layer, c is the compressibility of the fluid, and 
p(t,r) is the pressure in the layer. The boundary conditions are 

p(t ,  rk) = p k ,  P(t, ro) = p o ( t ) .  (4.2) 

The initial conditions are generally arbitrary. The volume dis- 
charge rate (the borehole discharge rate) is given by 

k Op(t, r) r=ro ro Op(t, r) r=ro" (4.3) q (t) = 2~roL i~ Or "~ Or 

In the steady state (4.1)-(4.3) yield the relations 

p(t, r )=P(r ) ,  q ( t )=  Q, 

P(r0) = P I ~ - - R Q ,  R = o l n ( r  k / r 0 )  (4.4) 

Here R is the constant resistance of the layer, and the quantities 
Q and P0 = P(ro) are determined by the intersection of linear charac- 
teristic (4.4) of the layer with the borehole characteristic F(q) in 
Fig. 5. For small R and in the presence of a declining segment of the 
curve F(q) we can generally have three distinct steady borehole gush- 
ing states. For simplicity we assume from now on that only one 
steady state is realized. 

The dynamic behavior of the quantities p0(t) and q(t) with devia- 
tions from the steady state is determined by the acceleration of the 
fluid and sand particles in the borehole stem, by the unsteady pro- 
cess of reconstruction of the pressure field in the layer, and by the 
finiteness of the rate of propagation of the perturbations. In accord- 
ance with what we said in w concerning the quantity h(q), the 
particle acceleration is negligible. We can also ignore the perturba- 
tion propagation time and the compressibility of the petroleum in the 
borehole stem. Applying Newton's second law, we derive an equation 
describing the dynamics of variation of the fluid discharge rate in 
the borehole stem, 

~ d q / d t = p o ( t ) - - F ( q ) ,  fJ ~ g r o  ~ ( H - h o p , ) d  1. (4.5) 

Let us investigate the stability of the steady states by the method 
developed in [3] for studying unsteady gushing states. Assuming small 
deviations of the tapping face pressure and discharge rate from their 
steady values, we find from (4.1)-(4.3), (4.5) that 

Ohp 1 0 ( OAp ~ ro OAp 
a - - g V - = r  W; r Or / '  A q - - - ~  Or 

r ~ r  o ' 

Ap (t, rk) = O, Ap (t, ro) = Apo, 

dAq dF q=Q 
= hpo --  F'Aq, F ' =  --~q . 

The corresponding characteristic equation is of the form 

ro (~Z + F') V-~[ to  (r k ~r~-)K~ (ro ] / ' ~ - )+  

+ I1 (ro ] / ' ~ ) K o  (r k ] / -~ ) l  - -  

- -  (o [ Io  (to ] / -aT)  Ko (rl,. ] / ' ~  ) "  

--  Io (~ Y~-< )Ko (ro VSY) l=  0 (4.6) 

Here y is an ordinary characteristic variable (Aq ~ Ap0 ~ eYt). 
The method of [3] consists in introducing the new variable u = 

= r0 [ay] ~2 , so that the stability condition becomes [arg u J > ~r/4. 

The roo t s  ), of Eq. (4.6) are real for 3 = 0, since they constitute the 
eigenvalues of the self-adjoint 8turm-Liouville problem, and since 
the corresponding values of u lie on the imaginary axiS. Entry into 
the domain of parameters of the problem where the stability con- 
didons are violated is possible only at the points y = 0 or y = ,o (by 
virtue of the realness of y). Making use of expansions of the Bessel 
functions in (4.6) for small and large values of the argument, we 
obtain the following conditions for F': 

F ' > 0 ,  or Y ' < - - o )  l n ( r l t / ro ) .  (4.7) 

These conditions define the stability domain. 
When the second condition of (4.7) is violated, stability loss can 

occur relative to arbitrarily small perturbations [3]. For B e 0, which 
corresponds to allowance for dynamic processes in'the borehole stem, 
the second condition of (4.7) remains unaltered while the first is 
replaced by F' > F 0' g O. The equation for determining F0' is readily 
obtainable from (4.6) if we recall that at the point of entry into the 
stability domain we have u = v + iv, where v is real [3]. 

Thus, for certain F' the steady state of borehole operation be- 
comes unstable and is replaced by an unsteady auto-oscillatory state. 
In view of the change in plug quality during the auto-oscillatory 
cycle, these auto-oscillations must be regarded as being of the re- 
laxation type. The representing point in Fig. 5 alternately enters 
the domains q < q, and q > q* of the phase plane and remains there 
for periods of time of the same order as the characteristic time re- 
quired for the state of the iayer in the neighborhood of the tapping 
face to become altered. The latter time can be assumed to be con- 
siderably larger than the characteristic time of alteration of the flow 
state in the borehole [3]. This allows us to assume that the resistance 
of the borehole stem is quite accurately described by the steady 
characteristic F(q) in these ranges. On the other hand, the state of 
the sand plug changes in a time of the same order as the characteristic 
time of the borehole. Hence, from the standpoint of the processes 
occurring in the layer, the change in state of the plug can be assumed 
to occur jumpwise with constant pressure at the tapping face [3]. The 
approximate shape of the auto-oscillatory cycle is shown in Fig. 6. 
Segment AB of this cycle corresponds to operation of a borehole with 
a densely packed sand plug. In our case it replaces the segment of 
the ordinate axis in Fig. 6 which corresponds to the cessation of 
gushing and is associated with the auto-oscillations due to the libera- 
tion of dissolved gas at a certain depth in the borehole stem investi- 
gated in [3]. This fact generally enables one to ascertain the type of 
auto-oscillations associated with the gushing of a given borehole. It 
is clear that changes in layer conditions (e. g . ,  lowering of the con- 
tour pressure) may lead to replacement of a steady state of borehole 
operation by an unsteady auto-oscillatory state, which in turn can 
be replaced by a steady state. 

I am grateful to G. I. Barenblatt, V. M. Entov, and A. Kh. 
Mirzadzhanzade for their valuable suggestions. 
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